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ABSTRACT 
Plots and tables are commonplace in today’s data-driven world, 
and much research has been done on how to make these fgures 
easy to read and understand. Often times, however, the informa-
tion they contain conveys only the end result of a complex and 
subtle data analysis pipeline. This can leave the reader struggling 
to understand what steps were taken to arrive at a fgure, and what 
implications this has for the underlying results. In this paper, we 
introduce datamations, which are animations designed to explain 
the steps that led to a given plot or table. We present the motivation 
and concept behind datamations, discuss how to programmatically 
generate them, and provide the results of two large-scale random-
ized experiments investigating how datamations afect people’s 
abilities to understand potentially puzzling results compared to 
seeing only fnal plots and tables containing those results. 
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1 INTRODUCTION 
As the world becomes more data-driven, we are increasingly pre-
sented with plots and tables that convey the results of complex 
analyses involving intricate datasets. A great deal of work has been 
done on how to make these fgures easy for readers to compre-
hend, for instance in helping people decode data values [10, 24, 38], 
make high-level inferences [51], and perceive related uncertain-
ties [16, 28]. All of this work has led to vast improvements in data 
visualization and data communication, and yet it has focused on 
conveying only a small part of what is involved in creating these 
plots and tables. 

By the time a reader is presented with a fgure, the underlying 
data have most likely been extensively processed (e.g., fltered, 
grouped, aggregated, augmented, and reshaped), but conventional 
plots and tables show only the end results of the analyses that led 
to them. As such, while the reader is often able to decode the values 
in a plot or table, they may be left wondering how those values 
were arrived at and what they actually mean. In short, it is easy to 
see a fgure and be unsure of exactly what went into creating it and 
how that afects what one should (and shouldn’t) take away from 
it. 

One solution to this problem is giving the reader more context 
around the steps that led to any given plot or table. Often times this 
is done through text and captions written to accompany a fgure. 
Such write-ups can be time-consuming to produce and are often 
only an approximation to the actual steps that were taken in any 
data analysis pipeline. As a result, these descriptions can introduce 
ambiguities, gloss over important steps in an analysis, or fail to 
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convey analysis steps in an easy-to-comprehend manner. Another 
potential solution is to simply share the code that generated a fgure, 
but this can have the opposite problem: while code is precise and 
provides exact information on the process that led to a fgure, it is 
often difcult for novices and experts alike to read and understand 
someone else’s code. 

This is where we see an opportunity to improve how data anal-
yses are communicated to readers. In this paper, we introduce 
datamations, automatically generated animations that explain the 
data analysis pipeline that produced a given plot or table. The idea 
behind datamations is relatively simple: as illustrated in Figure 
1, each step in a data analysis pipeline can be programmatically 
mapped onto a visual transformation of the underlying dataset, and 
these transformations can be chained together to produce an ani-
mated explainer for a plot for table. Datamations can, for instance, 
show data being fltered, split into diferent groups, and aggregated 
into summary statistics. 

To clarify our contribution, we are aware of existing examples 
of animations in data journalism [4] and education [37] that have 
been created to explain data analyses. These serve as inspirations 
for our work, but many of them are custom animations that require 
a great deal of time and manual efort to create, and do not readily 
generalize to other scenarios. Furthermore, custom animations for 
data analysis pipelines have not to our knowledge been tested in 
controlled experiments to assess the degree to which they help 
readers understand plots and tables they are shown. Thus, our con-
tribution is threefold: frst, to formalize the idea of datamations 
for explaining entire data analysis pipelines; second, to provide a 
framework by which such animations can be automatically gener-
ated to explain both plots and tables; and third to run large-scale 
experiments to better understand the potential benefts of (and 
issues with) these animations. 

In the remainder of the paper, we frst review previous work 
related to the development of datamations and then present a frame-
work for formalizing and automatically generating datamations. 
Then we apply this framework to generate and test example data-
mations that explain an instance of Simpson’s paradox [40], where 
a seemingly paradoxical reversal in fnal results can occur based 
on a small but important change to the underlying data analysis 
pipeline. We chose to study Simpson’s paradox because it is a case 
where understanding the data analysis pipeline is critical for under-
standing the corresponding results. The problem that we presented 
participants involved a dataset of salaries where, looking across 
industry and academia, people with master’s degrees make more 
money on average than people with PhD degrees overall, yet within 
both academia and industry people with master’s degrees make 
less money on average than people with PhD degrees. We created 
plots and tables describing these results along with accompany-
ing datamations that explain the process leading to these fgures. 
We then used these datamations as stimuli in two pre-registered 
experiments that involve over 1,200 participants to test whether 
datamations are able to improve comprehension of Simpson’s para-
dox. We investigated whether seeing datamations helps readers 
correctly identify that such a reversal is possible and/or whether 
it helps them choose the correct explanation for the reversal. We 
also used this experiment as a chance to collect qualitative feed-
back from participants on the benefts of datamations and ways 

in which they can be improved. We conclude with a discussion of 
participants’ feedback, and we present thoughts for future research 
to be done in this area. 

2 RELATED WORK 

2.1 Understanding data and analysis behind 
visualizations 

When readers are presented with a plot or table it can often be 
difcult to understand what led to the results encoded in that fgure. 
Information about the raw data and the analysis pipeline are often 
placed elsewhere, in the form of code and written paragraphs. The 
disconnect between data representations and analysis is evident in 
Rule et al. [45], where users (data analysts) reportedly share their 
data analysis results as emails and slides, excluding the compu-
tational notebooks that generated the fndings [45]. When users 
lack easy access to the context of data, they can misunderstand 
the data patterns they see. A concrete data scenario is Simpson’s 
paradox, where data trends in one grouping contradicts trends in 
another grouping [40]. Without explicit eforts such as a detection 
algorithm [21], users may miss out on such aspects of the data 
or struggle to understand these apparent contradictions [41]. We 
introduce datamations to enhance conventional plots and tables 
with details from the data analyses that generated them, and test 
their efectiveness using an instance of Simpsons’ paradox. 

2.2 Using animations to communicate data 
By using animations to explain plots and tables we hope to take 
advantage of their visual appeal and potential explanatory bene-
fts. As one example, the GapMinder1 animation communicates 
how life expectancy changed throughout the world in an engaging 
and informative manner[17]. Fisher suggests that such animations 
can be broadly useful when they follow the appropriate design 
principles [17]. By adding animated transitions between statisti-
cal graphics, Heer & Robertson fnd improvements in graphical 
perception in two ways—tracking objects and estimating changes 
[26]. Tracking objects—in our case data points in a plot or table— 
can be essential for understanding data analyses, as the user may 
want to know which data points are related to which results. In 
addition, users have been found to prefer animations over their 
static counterparts [2, 34]. Hypothetical outcome plots (or HOPs) 
are one recent and promising example of using animations to add 
to the information shown in static plots and boost reader compre-
hension [28, 31]. Specifcally, HOPs augment static visualizations 
such as error bars with animated frames of random draws from the 
underlying sampling distribution. With HOPs, animation conveys 
randomness and uncertainty in fnal results, but unlike datama-
tions, the goal of HOPs is not to communicate the underlying data 
analysis pipeline that led to these results. 

With datamations we aim to surface visually the entire analysis 
pipeline behind fnal plots and tables. The high-level idea behind 
datamations is similar to that of animations that teach complex sys-
tems and algorithms, as reviewed in Tversky et al. and Hundhausen 
et al. [29, 48], but with a more specifc scope and diferent goal. As 
we discuss in Section 3, datamations communicate a particular data 

1gapminder.org 
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analysis process with concrete steps and visual analogies. Instead of 
helping readers learn abstract algorithms in an educational setting, 
datamations are meant to help people understand specifc analysis 
results in everyday settings. 

Since creating animated transitions can be low-level and time 
consuming, previous work has developed ways to automate the cre-
ation of these transitions. Kim & Heer [36] propose a visualization 
grammar and a recommender system on the visual mark level (cf. 
the Grammar of Graphics [53]) to augment specifcation. In addi-
tion, Drucker & Fernandez design a framework for transitioning 
between unit visualizations [14], and Canis is a declarative lan-
guage for creating chart animations in SVG [19]. These approaches 
for automating animated transitions tend to work with a single 
data state and do not explicitly consider the semantics of animation 
such as aggregation or grouping. Our eforts on datamations take 
inspiration from and extend this work in two ways. First, we outline 
a general purpose framework for communicating entire analysis 
pipelines, such that there is a direct mapping from code that exe-
cutes an analysis to an animation that helps to explain it. Second, 
we ofer a large-scale empirical evaluation of the degree to which 
these animations aid readers’ understanding of potentially puzzling 
results through our experiments involving Simpson’s paradox. 

2.3 Probing the data analysis pipeline 
Datamations animate sequential, separable data operations, each 
of which can be thought of as a step in a “pipeline”, where verbs 
operate on the data at each step and pipes chain together the results 
of each operation. Here we present an implementation of datama-
tions centered around the programming language R, which has 
recently seen broad adoption of the pipeline paradigm through 
packages such as magrittr (which creates an explicit pipe operator 
within R, denoted by %>%) [3] and verbs to operate on data within a 
pipeline through the tidyverse/dplyr package [52]. That said, the 
pipeline approach is a general purpose one inspired by relational 
algebra [50] and has been adopted in systems ranging from Unix to 
Javascript [23]. As a result our work on datamations is applicable 
to this entire range of data analysis frameworks. 

Ordinarily, data analysis pipelines do not directly expose the 
intermediate data states involved in an analysis. To this end, there 
are existing solutions for probing pipelines, such as text-based 
tools [13, 42, 44] and static illustrative comics [49] to surface inter-
mediate results. Furthermore, a grammar for “data tweening” has 
been proposed to generate easy-to-follow, static data table visualiza-
tions to step through and explain database queries [33]. However, 
these solutions are often targeted at developers or data scientists 
and have not been evaluated in randomized experiments. Our work 
on datamations builds on these eforts by presenting a framework to 
automatically generate visually compelling animations that achieve 
similar goals, but for everyday consumers of data visualizations. 

2.4 Provenance 
Our eforts on visualizing data analysis pipelines are also related 
to work on visualizing data provenance [43]. Provenance is a broad 
research topic on the history of changes in the process of analysis 
and the creation of visualizations [43], and Chevalier et al. identify 

the use of animation as “the most under-explored” for replaying 
and summarizing history (provenance) [9]. 

The research community has designed many systems that cap-
ture and communicate data provenance during visual exploratory 
analysis and present it to users [6, 11, 15, 30, 46, 47]. These provenance-
capable systems focus on preserving and presenting all the alterna-
tives histories of user action. As a result, such systems often visualize 
provenance as abstract node-link diagrams [25]: the nodes repre-
sent data states, and forking links represent alternative actions 
or transitions between states. Partly due to the spatial layout of 
node-link diagrams, the exact data actions are often presented ab-
stractly, in text or as glyphs [25]. In comparison, datamations only 
communicate one version of an analysis pipeline, but emphasize 
more of the semantics of analysis operations (“verbs”) in the cor-
responding animations. In addition, most visual provenance tools 
operate within visual analytics interfaces and lack the fexibility 
of datamations, which translate potentially more complex code to 
animations. 

3 DESIGN OF DATAMATIONS 
Datamations are animations that explain data analysis pipelines. 
Our design of datamations is informed by an abstraction of states 
and transitions, summarized in Table 1. Given a data analysis 
pipeline, we defne states as all intermediate and fnal data val-
ues, and transitions are operations on these data. From there, we 
build mappings from data values to plots and tables, as well as 
mappings from data operations to diferent types of animations. 
We provide a prototype implementation of datamations as an R 
package.2 

Table 1: The datamations framework. Data values are 
mapped to states (shown as plots or tables) and operations 
on those values are mapped to transitions (shown as anima-
tions between plots or tables). 

Code map onto Visual 

State Data Values → Plot or Table 
Transition Data Operation → Animation 

3.1 Data value-plot/table mapping 
Datamations present intermediate and fnal data values as plots 
or tables. For tables, we assume that the data is in a “tidy” for-
mat [50], where each row corresponds to an observation and each 
column a variable, and there is one value per cell. The table visuals 
for datamations directly refect the rows and columns in the data, 
supplemented with labels of variable names and values to help com-
prehension. Figures 5 and 6 are examples of table visuals, with the 
latter being a sample of the frames in the table-based datamations 
used in our experiments. 

We have more fexibility when presenting data values as plots, 
and a large body of literature compares visualization types [5, 10, 28, 
35] and even looks at automating the process of selecting the best 
type of visualization for a given dataset [39]. To facilitate the design 

2https://github.com/seankross/datamations 
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Table 2: Data operations in datamations and their corresponding animations. 

Operation Animation 

group_by → Translate observations to depict splitting into groups 
arrange → Reorder observations to depict sorting by a variable 
mutate → Highlight observations to depict creating or modifying variables 
filter → Observations disappear to depict removal from dataset 
summarize → Observations collapse into summary values for each group 

of plot-based datamations, we make two design choices: frst, we 
use natural-frequency encodings as often as possible, and second, 
we constrain the datamation so that the fnal plot (keyframe) is 
identical to the plot it is meant to explain. For frequency encodings, 
we use icon arrays and jittered scatter plots. The cells in tables and 
icon arrays, and the points in scatter plots, convey to the reader 
the sizes of diferent subgroups in the data, so that readers can 
intuitively judge the relative proportions of these groups. We use 
these frequency encodings because they have been shown to lead 
to improved comprehension [1, 20] and decision making in various 
settings [18, 22, 32]. Figures 2 and 3 are examples of plot-based 
visuals, with Figure 3 showing frames in the plot-based datamations 
used in our experiments. 

3.2 Data operation-animation mapping 
Datamations support a set of operations in data analysis pipelines 
as described in Table 2. Given the plots and tables we generate 
from data states, the process of animating often amounts to trans-
lating visual markers representing individual data points from one 
coordinate to the next. As discussed above, here we show opera-
tions corresponding to R’s tidyverse/dplyr verbs [52] informed 
by data science tutorials3 and common transition and interaction 
types in the visualization literature [17, 27], but the framework we 
outline is general purpose and not language specifc. For instance, 
regardless of the language an analysis is carried out in, the idea that 
points might be grouped together and summarized by an average 
remains broadly applicable. 

This abstraction also incorporates modularity in the composition 
of datamations, which facilitates their automatic generation. Data 
analysis pipelines are very fexible and small changes—placing an 
aggregation operation before or after a group by operation—can 
have large consequences, some of which introduce logical (but not 
syntactical) errors. Since datamation transitions are directly deter-
mined by data operations (e.g., summarize()) and intermediate data 
states are already computed in the code, datamations automatically 
refect any such changes in the underlying pipeline, which can have 
the efect of alerting users to these important diferences. 

3.3 Following animation design principles 
We follow design principles and empirical fndings in the visual-
ization literature when creating datamations. Dragicevic et al. fnd 
that when animating between views, it is best to use “slow-in/slow-
out” transitions [12]. Accordingly, we use an exponential function4 

for easing the transitions between datamation states. When there 

is grouping in the data, all groups move at once instead of one 
group after another. This design choice is based on there being little 
advantage to “staggering” group animations [8]. In addition, data 
points within a group move in the same way. This is supported 
by Gestalt psychology: people perceive things similar in motion as 
belonging to the same group [7]. 

If we view the analysis pipeline as a whole, datamations are 
staged in that they animate one data operation at a time. Staging 
makes the animation easier to follow [54]. Datamations also gen-
erate only necessary motion and meaningful motion [17], as each 
animated transition is directly linked to a step in the analysis. 

4 OVERVIEW OF EXPERIMENTS 
We present two experiments where we gathered data from over 
1,200 participants to gain a deeper understanding of the potential 
benefts of (and issues with) datamations for explaining data anal-
ysis pipelines. Both experiments introduced the same scenario to 
each participant: they were presented with the results of a hypothet-
ical survey about employment analyzed in two diferent ways, with 
a seemingly contradictory reversal of results in average earnings 
due to an instance of Simpson’s paradox. As the main intervention, 
we showed participants these results as either a set of static images 
only or with a set of datamations. Participants were then asked 
whether it was possible that these two sets of results could have 
come from the same underlying dataset. After answering this ques-
tion, we revealed to participants that both results were in fact from 
the same dataset, and asked participants to select an explanation 
(from a set of eight possible choices) for how this potentially puz-
zling outcome is possible. We concluded by asking participants for 
their preferences about datamations compared to static images and 
for free text feedback on datamations. 

For our main analyses we tested two pre-registered5 hypotheses 
with this design: 

• H1: Acknowledging that a reversal is possible. Partici-
pants who see datamations of data analysis pipelines will 
be able to correctly identify that a reversal is possible in 
the dataset more often than participants who see only static 
images of fnal results. 

• H2: Identifying the correct explanation. Participants who 
see datamations of data analysis pipelines will choose the 
correct explanation for the existence of the apparent para-
dox in the dataset more often than participants who see only 
static images of fnal results. 

3https://rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf 
4https://gganimate.com/reference/ease_aes.html 5Pre-registration at: https://aspredicted.org/72qc9.pdf 
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We tested each of these hypotheses for two diferent settings in or-
der to evaluate the two types of datamations we have developed: one 
where people are shown plots and another where they are shown 
tables. Plot-based datamations resemble animated scatterplots and 
point-range plots, and in this experiment they were tested against a 
static image of point-range plots. In Table-based datamations, cells 
in a data table are animated as part of a grid, and they were tested 
against a static image of a data table. In total we conducted two 
between-subjects experiments (one for plot-based fgures and one 
for table-based fgures), each with two conditions (comparing static 
images to datamations). 

For both experiments, we report all sample sizes, conditions, 
data exclusions, and measures for the main analyses mentioned 
in the pre-registration document, with all data and analyses avail-
able as supplementary material.6 We determined the total sample 
size of 1,300 participants for our experiments based on estimates 
from a pilot study to enable detection of a diference of at least 10 
percentage points in the probability of correct answers between 
the static fnal fgures condition and the datamation condition with 
80% power in a one-sided7 comparison of proportions using the 
prop.test() function in R. All plots and datamations described 
below visualize synthetic data that we created for the purpose of be-
ing used in these experiments. Our experiments were approved by 
the IRB committee at Microsoft Research. A live version of the ex-
periments can be found online8, and the plots, tables, and animated 
GIFs containing datamations used as stimuli in the experiments are 
available in the online supplement. We ran the two experiments 
using one common task on Amazon’s Mechanical Turk for ease 
of administration, but describe and analyze them separately (as 
declared in our pre-registration) as they apply to diferent use cases 
(plots versus tables). As per our pre-registration, we excluded the 
27 participants who took part in previous pilots of the experiment 
before conducting any analyses. 

5 EXPERIMENT 1: PLOT-BASED 
DATAMATIONS 

The goal of our experiments is to understand whether datamations 
help people better comprehend the plots and fgures they are shown 
by exposing more information about the underlying data analysis 
pipeline that led to these fgures. To evaluate this we designed 
experiments to see if datamations could help people understand 
an occurrence of Simpson’s paradox within a dataset compared to 
a static fgures containing the same results. We chose to study an 
instance of Simpson’s paradox because it is a case where awareness 
of the underlying data analysis pipeline is crucial for resolving 
seemingly contradictory results. 

We created a synthetic dataset which contains the results of a sur-
vey about employment, where each respondent provided informa-
tion about whether they have a master’s degree or a PhD, whether 
they work in industry or in academia, and their annual salary. This 
dataset was constructed to show that on average respondents with 
master’s degrees made more money than respondents with PhDs, 

however when the data are grouped according to whether respon-
dents work in academia or industry, then PhDs make more money 
on average within each group. In this experiment we created static 
plots that showed this reversal along with datamations that did 
the same, and randomly exposed participants to one of these two 
stimuli. 

5.1 Stimuli 
The frst stimulus for this experiment (the entirety of Figure 2) 
is a static image of two point range plots that are the result of a 
modest data analysis pipeline. Both plots show average salaries and 
standard errors between groups of diferent degree holders, and the 
second plot further distinguishes between degree and work setting 
(academia versus industry). 

The second stimulus for this experiment (illustrated in Figure 3) 
is a looping animated GIF fle meant to show transitions between 
diferent parts of the a data analysis pipeline, which ultimately ends 
in a plot similar to what is displayed in Figure 2. While the static 
version shows two charts, this version shows two datamations: 
one that only accounts for degree when calculating the average 
salary, and a second datamation that shows the contrasts for both 
degrees in industry and in academia separately. These plot-based 
datamations start as a grid of points that are then colored and 
arranged according to what type of degree an individual has (in the 
frst case) or their degree and their work setting combined (in the 
second). These points then shift into a bee swarm plot that show 
salary on the Y axis and category (according to degree and work 
setting) on the X axis. Finally these points contract onto one point 
representing the group average salary, ending the transformation 
as a point range plot. 

5.2 Procedure 
First we provided participants with an overview of the study and 
presented them with a consent form. Specifcally we told partic-
ipants that they would be asked questions about a dataset and 
that they should not consult external resources to formulate their 
answers. After this introduction participants saw the following: 

Imagine that you are an analyst working for a think 
tank. You conducted a salary survey with 100 respon-
dents in June 2018. Each respondent worked in either 
industry (companies) or academia (colleges and uni-
versities) at the time of the survey. Also, each respon-
dent had either a master’s or a PhD degree. Each of 
the 100 respondents reported: 
• Work setting: whether they worked in academia 
or industry at the time of the survey. 

• Degree: their highest education level obtained (mas-
ter’s or phd degree). 

• Their current annual salary. 
After clicking a button acknowledging that they had read this 

information, participants were shown one of two conditions: either 
a static image, or a series of datamations. The static image that 

6See https://osf.io/85njc/ for all supplemental material. participants saw is in Figure 2, and an illustration of the series of 
7We conducted one-sided tests because we are only interested in whether datamations datamations that participants saw can be found in Figure 3. For 
improve upon the status quo of static fgures. participants who saw datamations, they were presented with six 8https://jhofman.github.io/datamations-chi2021-paper/simpsons_multiple_choice_ 
all/ randomly redirects to one of the experimental conditions. datamations in sequence, with each datamation corresponding to 
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Figure 2: In our frst experiment we tested whether plot-based datamations help participants to understand data analysis 
pipelines. Participants were randomly assigned to see either two static plots (shown in this fgure) or a animation (illustrated 
in Figure 3). 

Figure 3: The timeline above illustrates two series of animations that were shown to participants in sequence. In the frst 
datamation, individuals in the survey are displayed as grey circles, then they are colored in according to whether they have a 
master’s degree or a PhD. The points then move to show a bee swarm plot according to each individual’s salary by their degree. 
Finally, the points in the bee swarm converge to show line plots featuring means and 95% confdence intervals. The average 
salary for an individual with a master’s degree appears to be higher than the average salary for someone with a PhD. The 
second datamation is similar to the frst, except each point is separated further according to whether that individual works 
in industry or academia. In the last frame we can see that the trend is reversed: it appears PhD holders make more money on 
average than people with master’s degrees. 
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a step in the data analysis pipeline. Each of these datamations 
played on a loop so that the animation restarted after it reached the 
last frame. After seeing each abbreviated datamation in sequence, 
participants in this condition saw the entire datamation pieced 
together, showing an animation of the entire data analysis pipeline. 
Finally participants in the datamation condition were shown both 
the complete datamations and the fnal static images in Figure 2. 

After seeing either only a static image in one condition, or a 
series of datamations and a static image, participants were asked: 

Note that compared to people with PhDs, people with 
master’s degrees make more in the left chart, but make 
less in the right chart. Does it seem impossible to you 
that the results would come out this way? 

Participants could wither select Yes, it seems impossible or No, it 
seems possible, the latter being the correct answer. 

After submitting their answer participants were provided with 
the correct answer (that the results are in fact from the same dataset, 
without any data exclusions or manipulations) and then asked to 
select one of eight multiple choice explanations that they thought 
best accounted for the seemingly paradoxical reversal. The text 
informing them of the correct answer is below: 

It turns out that these two charts are made up 
of the exact same data, just grouped diferently. 
That is, 100 people’s salaries are represented in the 
left graph and the same 100 people’s salaries are rep-
resented in the right graph. There is no mistake in the 
charts, but it may seem like a paradox when both are 
true: 
• The left chart shows that people with master’s de-
grees make more money than people with PhD 
degrees on average. 

• The right chart shows that people with master’s 
degrees make less money than people with PhD 
degrees on average, both inside industry and inside 
academia. 

Which of the following could explain how both state-
ments are true? This is the main point of this ex-
periment. Please take it seriously. 

Participants could then select from the following answer choices: 
• Most people with a master’s degree work in industry, which 
pays more and drives up the average master’s salary in the 
left chart. 

• People with neither master’s nor PhDs are factored into the 
right chart, which biases the averages in opposing directions. 

• In the right chart, there are many kinds of industry jobs, but 
fewer kinds of academic jobs. 

• The diferences in the left chart are not statistically signif-
cant and therefore could be due to chance. 

• Due to outliers, the master’s point on the left chart can be 
higher than both master’s points on the right chart. 

• The chart on the left includes salaries from people who work 
in neither industry nor academia and who are unrepresenta-
tive of the general trend. 

• The left chart shows data from more respondents than the 
right chart, so it is not appropriate to compare the two charts. 

• None of the above explain the diference. 

The correct answer is the frst answer we show here, however the 
order of all of the answer choices (except for “None of the above”) 
were randomized for each participant. We derived these answer 
choices from a pilot study we conducted using Amazon Mechanical 
Turk workers where we solicited free response explanations for 
what could be causing the apparent paradox and coded them into 
these eight categories. 

After submitting their answers participants were asked to indi-
cate whether they preferred static charts or datamations, and they 
were encouraged to explain their preference in free response text. 

5.3 Participants 
We recruited participants from Amazon Mechanical Turk and, after 
excluding those who had taken part in any pilots of this study, 
randomly assigned 368 participants into the condition that only 
saw static plots and 340 participants into the condition that saw 
datamations. Each task was available to Turk workers with an 
approval rating greater than or equal to 99%, and to be eligible to 
participate the worker had have previously completed at least 100 
tasks on AMT. Workers were paid a one-time fee of $1.50. 

5.4 Results 
After collecting responses from all participants, we conducted the 
analyses specifed in our preregistration plan. Accordingly, we re-
moved participants who fnished the experiment too quickly (fve 
participants who fnished in under 45 seconds for the static condi-
tion, and one who fnished in under 90 seconds for the datamations 
condition). This left us with 363 participants who saw only the fnal 
static plots and 339 participants who saw datamations. Median 
completion time for the experiment was 6.9 minutes. 

Acknowledging that a reversal is possible. We frst looked at 
participants’ ability to correctly identify that a reversal in average 
earnings between workers with masters and PhD is possible based 
on whether one conditions on the work setting or not. For each 
condition we computed the fraction of participants who correctly 
stated that "it seems possible" that results could come out this way. 
As shown in Figure 4a, we fnd that that while only 47% of partici-
pants who saw only the fnal plots answered this question correctly, 
61% of participants who saw plot-based datamations did so, a sta-
tistically signifcant (�2 (1, � = 702) = 14.30, � < .001, one-tailed) 
and sizeable diference of 14 percentage points (Cohen’s ℎ = 0.29). 

These results support our hypothesis that plot-based datama-
tions can improve people’s ability to understand data analyses over 
static data visualizations alone. Why might this be? While our ex-
periments were not designed to uncover a precise mechanism to 
explain our results, we can ofer a guess. In this case, participants 
saw two sets of datamations: one for salaries split only by degree 
type and one split on degree type and work setting. While the fnal 
plots showed diferent directional trends that might be puzzling 
on their own, the initial frames of each of these datamations are 
identical, and the animations showed smooth transitions from these 
identical initial frames to the fnal ones. Although this does not 
prove to the reader that both datasets are identical or that the re-
versal is possible, it might nonetheless increase the chances that 
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Figure 4: Main results of Experiment 1, comparing static plots to plot-based datamations. The left panel shows the fraction 
of participants who were correctly able to resolve Simpson’s paradox in each condition, stating that it was not impossible 
that the two diferent plots they were shown could have come from the same dataset. The right panel shows the explanation 
participants chose to resolve the paradox from a multiple choice list. The top option (in bold) is the correct one. Error bars in 
both plots show one standard error on the estimated mean. 

participants fnd it plausible that this is the case, leading to a boost 
in correct answers to this question. 

This potential explanation relies on a simple strength of datama-
tions over static plots: they ofer strictly more information about 
the underlying analyses than plots alone. This of course could be 
done by making a series of plots for diferent stages of an analysis 
with text explaining the relationship between these plots, but this 
can quickly become cumbersome for authors to produce and for 
readers to consume. Datamations, in contrast, ofer an easy and 
compelling way for this information to be shared with readers. 

Identifying the correct explanation. After answering the iden-
tifcation question all participants were told that both fgures they 
saw were in fact from the same underlying dataset and asked to 
choose one of eight multiple choice explanations for how this could 
be the case. Figure 4b shows the the distribution of explanations 
chosen within each of the two conditions, ranked from most to 
least commonly chosen. The answer on top—that "Most people with 
a master’s degree work in industry, which pays more and drives 
up the average master’s salary in the left plot"—is the correct one. 
Comparing the top-most blue and red points, we again see a large 
(21 percentage point, Cohen’s ℎ = 0.42) and statistically signifcant 
(�2 (1, � = 702) = 30.05, � < .001, one-tailed) improvement be-
tween those who saw datamations and those who did not. Even 
after being told that these were in fact the same dataset, under half 
(47%) of people who saw only the fnal plots answered this question 
correctly, whereas more than two thirds (68%) of people who saw 
datamations did so. 

The distribution over the remaining (incorrect) answers pro-
vides some additional insights as to why datamations might help 
readers understand data analyses. The two most frequent incorrect 

responses to this question for participants who saw only the fnal 
plots were explanations that involved heterogeneity in or represen-
tativeness of the data. The next involved the presence of outliers. As 
discussed with the previous question, one explanation consistent 
with these results is that participants who saw datamations were 
shown smooth transitions between identical initial frames and fnal 
results, reducing the chances that they thought diferences in the 
datasets were responsible for the reversal. 

6 EXPERIMENT 2: TABLE-BASED 
DATAMATIONS 

This experiment mirrored our frst experiment, but was designed 
for settings where people are presented with tables instead of plots. 
As many of the details are the same, here we simply discuss the 
changes that were made from the plot- to table-based setting. 

6.1 Stimuli 
The frst stimulus for this experiment, seen in Figure 5, shows 
two tables that could be computed at the end of a relatively small 
data analysis pipeline. The frst table shows the average salary for 
workers according to what kind of degree they have, while the 
second table shows the average salary for combinations of degree 
and work setting. These tables and the following datamations were 
created using the same synthetic salary survey data from the frst 
experiment. 

The second stimulus for this experiment, which is illustrated 
in Figure 6, is another looping animated GIF that highlights the 
transitions and transformations required to go from the raw table 
of survey data to a summarized table that contains average salaries 
for each group. Both datamations start with the same raw table of 
survey data, but then they diferentiate depending on how many 
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Figure 5: For our second experiment we tested whether tabular datamations help participants to understand data analysis 
pipelines. Participants were randomly assigned to see either two images of tables (shown in this fgure) or a animation (illus-
trated in Figure 6). 

Figure 6: This timeline illustrates the tabular datamations in our second experiment with two series of animations that were 
shown to participants in sequence. In the top datamation every survey respondent is represented by a row, where the frst 
column in that row shows their degree, the second column shows whether they work in academia or industry, and the third 
column shows their salary. The datamation then zooms out to show the entire table, and the table cells in the frst column 
are colored in depending on which degree an individual has. New, summarized values representing the average salary of each 
group then appear to the right of the table. The original table then disappears and the table of summarized average values is 
centered. Finally, the datamation zooms back in to show the summarized table with the average value for each type of degree. 
The mechanics of the bottom datamation are similar, however both the columns representing degree and work environment 
are colored in, and groups of cells are distinguished by the four possible combinations of degrees and work settings. Finally 
the fnal table shows average salaries for each pair of degree type and work setting. In the last frame we can see that the trend 
from the frst datamation is reversed: PhD holders make more money on average than people with master’s degrees in both 
academia and industry. 
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subgroups are required by the analysis: there are only two sub-
groups when calculating the average salary across two diferent 
types of degrees, however four subgroups are highlighted when 
calculating average salary across degree types and work settings. 
Once the average salary values have been calculated the raw values 
fade away and the summarized values take focus. The two static 
tables are the end frames for the two datamations: both tables are 
transformed diferently depending on how they are grouped. 

6.2 Procedure 
The experiment for tabular datamations proceeded similarly to the 
experiment for plot based datamations. Participants received the 
same information about our study up front and were presented 
with the same consent form. In the frst section of the study they 
were presented with the same prompt (Imagine that you are an 
analyst working for a think tank...) and after acknowledging they 
had read that information they were in either shown static images 
(featured in Figure 5) or a series of tabular datamations, illustrated 
in Figure 6. 

As in the frst experiment, participants who saw datamations 
were presented with six datamations in sequence, with each data-
mation corresponding to a step in the data analysis pipeline. Each 
of these datamations played on a loop. Participants in this condition 
then saw the datamations pieced together. Finally both the com-
plete datamations and the fnal static images (as in Figure 2) were 
shown to the participants in the datamation condition, whereas 
participants in the other condition saw only the fnal images. 

Participants were asked the same question they were asked in 
the frst experiment (Does it seem impossible to you that the results 
would come out this way?) except the language was changed slightly 
to discuss tables instead of plots. After submitting their response 
participants were provided with the correct answer and then asked 
to select one of eight multiple choice explanations from the frst 
experiment except with diferent language talking about tables 
instead of plots where appropriate. The order of answer choices was 
randomized for each participant. Finally participants were asked to 
indicate whether they preferred static fgures or datamations, and 
they could provide a written explanation. 

6.3 Participants 
As in the frst experiment we recruited participants from Amazon 
Mechanical Turk and randomly assigned 298 participants into the 
condition that only saw static tables and 267 participants into the 
condition that saw tabular datamations. Workers were held to the 
same standard as they were in the frst experiment: they had to 
have 99% or better approval ratings, experience completing 100 or 
more tasks, and they could not have participated in our previous 
pilots. Workers were paid a one-time fee of $1.50. 

6.4 Results 
After collecting responses from all participants, we again removed 
participants who fnished the experiment too quickly (four partic-
ipants who fnished in under 45 seconds for the static condition, 
and one who fnished in under 90 seconds for the datamations con-
dition). This left us with 294 participants who saw only the fnal 
static tables and 266 participants who saw datamations. Median 

completion time for the experiment was 6.9 minutes. 

Acknowledging that a reversal is possible. As with the pre-
vious experiment, we frst looked at people’s ability to correctly 
identify that a reversal is possible. As shown in Figure 7a, we see a 
similar boost in ability to answer this question correctly for those 
who saw datamations compared to those who saw only fnal tables, 
supporting our frst hypothesis. While only 52% of participants 
who saw static tables recognized that the reversal was possible, 60% 
of participants who saw datamations did, a statistically signifcant 
(�2 (1, � = 560) = 2.80, � = .05, one-tailed) 8 percentage point 
diference (Cohen’s ℎ = 0.15). 

One explanation consistent with these results is that improve-
ments are due to the increased transparency ofered by datamations: 
participants saw identical starting frames of the animations, which 
could have increased the chances that they would recognize these 
results as possibly coming from the same dataset. That said, in these 
table-based datamations, only a subset of the actual salary values 
are visible, as it quickly becomes prohibitive to display hundreds of 
values in plain text such that readers can actually see and process 
them. As a result, this leaves reasonable ambiguity as to whether 
the datasets in the initial frames of the datamations are indeed 
identical. Nonetheless, we see that table-based datamations can 
help readers recognize that Simpson’s reversal is indeed possible. 

Identifying the correct explanation. After all participants were 
told that the datasets were in fact identical and the reversal was 
possible, they again chose one of eight explanations for why the re-
versal occurs. Figure 7b shows the distribution of responses within 
each condition, ranked from most to least popular, with the cor-
rect answer in bold on the top. Comparing the the top-most blue 
and red points, we see a lack of support for our second hypothe-
sis, as we fnd no evidence of a statistically signifcant diference 
(�2 (1, � = 560) = 0.06, � = .60, one-tailed) between the proportion 
of participants who chose the right answer (51% for those who saw 
only fnal tables versus 49% for those who saw datamations). 

It is difcult to explain why we see that datamations boost ability 
to identify that the reversal is possible, but see no evidence for an 
improvement in ability to explain why the reversal occurs. That 
said, we can ofer two potential explanations. The frst is simply 
that laypeople may be less comfortable or facile with tabular rep-
resentations of data. The second is based on the same ambiguity 
mentioned above: while table-based datamations show the relative 
sizes of diferent subgroups in the data, they may be unable to 
clearly convey all of the underlying individual salary information. 
The cells can simply become too small to insert the salaries as text 
when several hundred rows are shown, and even if they were visible 
they would likely be difcult for participants to process holistically. 
If this is correct, it may be the case that table-based datamations 
are good for some users (e.g., data scientists) and not others, or may 
be more helpful for certain types of data analysis operations than 
others (e.g., joins or data reshaping) not explored here. 
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Figure 7: Main results of Experiment 2, comparing static tables to table-based datamations. The left panel shows the fraction 
of participants who were correctly able to resolve Simpson’s paradox in each condition, stating that it was not impossible that 
the two diferent fgures they were shown could have come from the same dataset. The right panel shows the explanation 
participants chose to resolve the paradox from a multiple choice list. The top option (in bold) is the correct one. Error bars in 
both plots show one standard error on the estimated mean. 

7 FUTURE PREFERENCES AND FEEDBACK 
ON DATAMATIONS 

As mentioned above, the fnal page in both experiments asked par-
ticipants for their future preferences about datamations. Regardless 
of which condition participants were assigned to, everyone was 
shown both static fgures (either plots or tables, depending on the 
experiment) and the corresponding datamations, and asked whether 
they would like to see future fgures presented as either a) only 
static or b) static “accompanied by animations like these”. As shown 
in Figure 8, close to two thirds of participants who saw plot-based 
datamations expressed that they would like to see these animations 
in the future, while almost half of participants who saw table-based 
did. 

After making this choice, participants were asked to provide 
free text feedback about whether these animations were helpful or 
not. While a good deal of the feedback was generally supportive 
of the goal behind datamations and in line with insights from our 
main analyses (“It makes me think more about the data rather 
than the static charts”, “It gives a good visual of how the change 
takes place when averaging on the chart”, “Since it shows exactly 
how the charts are made it gives a little bit more information and 
understanding to the reader”), there were also informative critiques 
that ofered insights for how datamations could be improved. 

One fairly common piece of feedback was that refned timing of 
the animations and the ability to control playback would be very 
helpful (“It is easier for me to read the tables rather than animations 
like these because I can read at my own pace and not have to feel 
rushed to obtain the information”, “I would have preferred to be 
able to see each static slide as well, or to have some control over 
the animation (pause, slow down, rewind, etc.)”, “I think they’re 

helpful, but I would like to be able to pause them so I could read 
and compare them”). 

In designing these experiments, we initially considered including 
controls for playback with the datamations, but ultimately decided 
against them to keep the experiment as tightly controlled as pos-
sible. This provided all participants with the same experience and 
avoided concerns about endogeneity, but it would be interesting 
to conduct further studies on how datamations with playback con-
trols perform in terms of both the main hypotheses we studied and 
people’s preferences going forward. Another issue with timing may 
be that participants were Mechanical Turk workers who are often 
trying to complete as many microtasks as possible in a given time 
frame to earn the highest hourly wage possible. As such, it is likely 
the case that our participants had less tolerance for watching anima-
tions play out than, say, a reader who opts into viewing an article 
containing a datamation because they are inherently interested in 
the topic it concerns. 

Finally, there were several participants who pointed out issues in 
reading details of the table-based datamations (“I like the animation, 
but it is very small and hard to read so would prefer the static 
tables”, “I liked the tables and animation, but they were a little 
small”). While we believe that some of these concerns could be 
addressed with diferent design choices in our stimuli, we also 
recognize that as datasets grow in size, it becomes increasingly 
difcult to create datamations that contain all of the underlying 
data, especially in the table-based animations. In these settings we 
might consider aggregation or sampling to reduce the amount of 
information shown to readers, and leave this as future work. 
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Figure 8: People’s preferences for seeing datamations in the 
future for both the plot-based and table-based experiments. 

8 DISCUSSION 
In this paper we have described an opportunity to improve how 
data analyses are communicated to readers through the use of 
datamations, which are animations that reveal details of the data 
analysis pipeline that led to a given plot or table. We presented 
a modular framework that allows analysts to programmatically 
translate data analysis code into datamations that attempt to explain 
that code. We then used this framework to generate datamations 
and ran experiments comparing them to static plots and tables. 

The results of our experiments show that datamations, in most 
cases, improved people’s performance on test items about a subtle 
data analysis pipeline. Specifcally, through two, large-scaled pre-
registered experiments we found evidence that both the plot-based 
and table-based datamations we showed people ofered sizable in-
creases on comprehension questions about an instance of Simpson’s 
paradox. Furthermore, many participants reported gaining impor-
tant insights from these datamations as well as a preference for 
seeing animations like these in the future. Participants also provided 
helpful critiques of the specifc implementations of datamations 
we showed them and how they could be improved. Key insights 
are that the timing of the animations and ability to control their 
playback are important for an enjoyable and informative user expe-
rience. Our experiments also surfaced the insight that table-based 
datamations can become difcult to read with medium to large 
datasets due to constraints in displaying many small table cells at 
once. 

There are, of course, many limitations to this work, as we have 
explored only a small subset of possible research directions related 
to the task of communicating and explaining data analysis pipelines. 
Specifcally, we looked at how datamations help one population 
(laypeople being paid to participate in a lab experiment) to per-
form one task (resolve Simpson’s paradox) with a particular visual 
implementation (self-playing GIFs with the visual transitions we 
tested). These experiments have helped us answer some questions, 
but raise many others. 

First, even in this particular setting there are several additional 
questions one might ask. For instance, did participants truly “under-
stand” the datamations they saw? Unfortunately our experiments 
cannot answer this question, as comprehension is abstract construct 
that cannot be directly measured or assessed. One could, however, 
imagine more detailed studies designed to assess what participants 
do and don’t take away from datamations using techniques such as 
think-aloud protocols and in-depth interviews. Likewise, what is 
the precise mechanism responsible for results we saw, and are there 
alternative, possibly simpler, interventions for communicating data 

analysis pipelines that could be just as efective as datamations? 
Again, our experiments cannot answer these questions, as they 
were designed to compare the status quo (static plots and tables) to 
what we thought was a viable, practical alternative (animated GIFs) 
for the purpose of detecting if an efect exists at all. Now that we 
know this is the case, one could conduct more tightly controlled 
experiments to isolate efects and identify underlying mechanisms. 
For instance, is it crucial that datamations are animated, or even 
visual? Or could a series of static panels depicting a data analysis 
pipeline or a simple paragraph of descriptive text be just as efec-
tive? And what future design choices could make datamations even 
more efective than those tested here? Some of these questions are 
notoriously difcult to answer [48], but might be appealing subjects 
for future research. 

Second, beyond the setting we studied here there are several 
ways this work could be extended by testing datamations on dif-
ferent audiences, for diferent purposes, and with diferent imple-
mentation details. For instance, it would be interesting to see how 
datamations could be used to teach students learning data analysis 
about diferent concepts, or to see how seasoned data scientists 
make use of datamations for understanding and debugging code 
they are writing. One could also evaluate datamations for a host 
of other types of data analysis pipelines—for instance involving 
more complex operations like data joins, reshaping, modeling, sta-
tistical estimation, etc.—and investigate for which settings they do 
(and don’t) provide value over the status quo. Likewise, there are 
many opportunities to add to, experiment with, and optimize the 
visual elements and transitions used in datamations, akin to the 
research done in the HCI community to improve the details of static 
visualizations. Finally, there is the opportunity to develop software 
packages that make it easier for developers to explain their data 
analysis pipelines to their audiences. We have created one such 
implementation based on the framework described here, but there 
are many ways it can be extended in the future. It is currently de-
signed to work for R’s tidyverse, but we hope to see it extended to 
other programming languages and packages. We view this as the 
frst of many steps towards developing more tools to explain data 
analysis pipelines and their results to students, analysts, and their 
audiences. 
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