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How do people form impressions of effect size when reading scientific results? We present a series of studies on how people perceive
treatment effectiveness when scientific results are summarized in various ways. We first show that a prevalent form of summarizing
results—presenting mean differences between conditions—can lead to significant overestimation of treatment effectiveness, and that
including confidence intervals can exacerbate the problem. We attempt to remedy potential misperceptions by displaying information
about variability in individual outcomes in different formats: statements about variance, a quantitative measure of standardized effect
size, and analogies that compare the treatment with more familiar effects (e.g., height differences by age). We find that all of these
formats substantially reduce potential misperceptions and that analogies can be as helpful as more precise quantitative statements of
standardized effect size. These findings can be applied by scientists in HCI and beyond to improve the communication of results to
laypeople.
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1 INTRODUCTION

As the world becomes more data-driven, people are increasingly exposed to statistical information about uncertain
outcomes. In the field of HCI, for instance, researchers strive to quantify and communicate statistical uncertainty in their
results [42, 43]. Likewise, other scientific domains face similar challenges in communicating results to audiences that
may not be experts in their respective fields. For instance, newspaper articles often report the results of medical studies
where some people are randomly assigned to receive an experimental treatment (e.g., green tea extract supplements)
while others are not, after which the health of people in the two groups is compared (e.g., by measuring changes in
cholesterol levels). In summarizing such studies, it is common for authors and journalists alike to present readers with
information about the average outcome in each group, often emphasizing the difference in means between groups as
evidence for treatment effectiveness (e.g., the group that was assigned to take the supplements lowered their cholesterol
by 0.62 mmol/L more than the control group on average [33]).

While mean differences provide an indication of treatment effectiveness, they also rely on domain knowledge (e.g.,
familiarity with units of mmol/L in the green tea example and whether 0.62 mmol/L is large or small) and mask
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potentially important information about how outcomes vary around group averages. The latter is especially important
for individual-level decision making, where one is concerned with what their own particular outcome is likely to be, as
opposed to the average outcome for a large group of people.

For instance, consider two different supplements, each of which lowers cholesterol by the same amount on average,
but those assigned to take the first supplement end up with highly variable cholesterol while those who take the second
all have outcomes close to the improved average for the group. Most people would value the second option higher
than the first, as it represents a less uncertain choice in terms of their own individual health if they were to take the
supplement.

The idea of conveying information about both average treatment effects and variation around these averages is not
new. In fact, it has been around for decades and initially gained traction in scientific communities with the work of the
statistician Jacob Cohen [19]. Cohen introduced measures of standardized effect size that incorporate information about
both average outcomes and variation in outcomes, useful for comparing effects across different domains. One such
measure of standardized effect size, known as Cohen’s 𝑑 , simply normalizes the mean difference between groups by the
(pooled) standard deviation in individual outcomes: 𝑑 =

𝜇1−𝜇2
𝜎 .

Unfortunately—and despite calls from the HCI community [25, 38, 56] and many other scientific communities [2,
3, 18, 19, 59]—it remains rare that scientists report measures of standardized effect size in their published work. In
fact, as we show below in a comprehensive review of every award-winning paper at CHI 2020, only a handful of these
papers report standardized effect sizes. Furthermore, it is even more unlikely that such information is relayed in popular
coverage of these studies. This may in part be due to the fact that people have limited experience and familiarity with
standardized effect size measures. For instance, it is unlikely that a typical newspaper reader has an intuition for what a
particular value of Cohen’s 𝑑 (e.g., 𝑑 = 0.42 in the green tea example above) implies about treatment effectiveness.

Cohen recognized that this might be the case among scientists and laypeople alike, and so he proposed several ways
to translate his 𝑑 measure into terms that might be easier for people to understand. The first, simplest, and most widely
adopted is a set of qualitative categories ("small," "medium," and "large"), under which the green tea effect mentioned
above would be characterized as "medium-sized".1 Cohen also suggested re-expressing standardized effect sizes in terms
of probabilities, such as the probability of superiority (also known as common language effect size, or CLES [27, 51]),
which captures how often a randomly selected member of the treatment group scores higher (or lower, in the case of
cholesterol) than a randomly selected member of the control group. The probability of superiority for the green tea
example is approximately 62%. Finally, Cohen even offered his readers analogies that compared values of 𝑑 to more
familiar effects, such as a difference in height by age. In this case, the difference in cholesterol between those who took
green tea supplements and those who didn’t is similar to the difference in height between 13 years old and 18 years old
American women [21].

While there has been a great deal of discussion around alternatives for computing and reporting standardized
effect sizes, there has not to our knowledge been any research to assess how people perceive effects when statistical
results are presented in these different formats. In this work, we ask what can be done to accurately communicate
the effectiveness of an uncertain treatment to laypeople. We contribute a sequence of four large-scale, pre-registered,
randomized experiments involving close to 5,000 participants to investigate how to best communicate effect sizes,
centered around two main research questions:

1Cohen warned that standards for these categories would likely vary across the social sciences, which has since been confirmed [12, 53].
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• Research Question 1: How effective do people think a treatment is when the treatment is summarized only in
terms of its average effect?

• Research Question 2: How do these initial perceptions change after people are presented with information
about how individual outcomes vary around the average effect?

All four of our experiments use a similar framework where participants read a scenario about a fictitious competition
in which their performance can potentially be improved by paying for a treatment.We vary the way in which information
about this treatment is presented to readers and measure how each format affects their willingness to pay for the
treatment and their estimated probability of winning under it. We compare responses to reasonable norms to assess the
biases introduced by each format.

In the first experiment, we assess the status quo by exploring ways of presenting the treatment that are commonly
found in popular books and articles, ranging from simple directional statements to visualizations of statistical estimates.
Regardless of the specific format, we find that summarizing the treatment in terms of only mean differences can lead to
significant overestimation of treatment effectiveness, and, somewhat surprisingly, that including confidence intervals
can, in some cases, exacerbate the problem.

In the subsequent three experiments, we attempt to remedy these issues by adding information about variability in
individual outcomes in several different formats, including explicit statements about variance, probability of superiority
for the treatment, and analogies that compare the treatment with more familiar effects, similar to the ones Cohen used
in his textbook. We find that all of these formats substantially reduce potential misperceptions and that effect size
analogies can be as helpful as more precise quantitative statements of standardized effect size.

2 BACKGROUND & RELATEDWORK

2.1 Communicating Effect Size

Null Hypothesis Significance Testing (NHST) is a standard practice in scientific reporting, but many have suggested
that it be de-emphasized in favor of communicating effect sizes [9, 20, 46–48, 52, 58]. Broadly speaking, much of
NHST focuses on whether differences between two or more groups systematically deviate from a fixed value (often
taken to be zero), whereas effect sizes focus on how large of a difference exists between these groups [18]. Though
there is no unified standard for how to report effect sizes, existing guidelines provide various options to calculate and
communicate them [27, 30, 51, 57]. Some researchers advocate for presenting "simple" effect size measures, such as raw
mean differences between groups [4, 5, 26, 54], whereas others exclusively consider "standardized" measures of effect
size such as Cohen’s 𝑑 [37, 39]. However, Cummings et al. [23] show that, even after many calls to shift to reporting
standardized effect sizes, fewer than half of the figures they surveyed show error bars of any type, encoding only mean
differences; of those that do show error bars, those error bars most commonly represent one or two standard errors on
a mean, the latter being one of the formats we test. In our work we compare mean differences (a simple effect size) to
several standardized effect sizes that incorporate variation in individual outcomes.

While much has been written on developing and advocating for different measures of effect size and methods for
estimating effect sizes (e.g., [44]), relatively little work has been done on how people perceive effect sizes that they
are exposed to. One exception is work by Hofman et al. [35], which looks at how people perceive different visual
representations of uncertainty commonly found in scientific publications. This work finds that visualizations depicting
inferential uncertainty (e.g., plots containing standard errors or confidence intervals around parameter estimates) lead
people to overestimate standardized effect sizes compared to visualizations that show outcome variability (e.g., plots
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showing standard deviations or prediction intervals). Here we extend this work to include a wider range of scenarios
that are more commonly encountered by laypeople. Specifically, we broaden the focus from only visual representations
of effect sizes to include text-based representations, and from scientific publications to more general reporting of
treatment effectiveness that are more likely to be encountered in popular books and articles. We further suggest how
to alleviate potential misperceptions of standardized effect sizes using simple text-based reporting and analogies for
standardized effect sizes.

There are also studies of how people perceive effect sizes from the psychology literature. For instance, Funder and
Ozer discussed how different ways of reporting effect sizes could be interpreted in the context of psychology studies [32].
Other work done by Brooks et al. [13] compares "traditional" measures of effect size to "nontraditional" measures
like the probability of superiority. Though similar in spirit, there are a few key differences between their work and
ours. First and foremost, Brooks et al. assume that the standard for communicating effect sizes are measures such as
Pearson’s correlation coefficient (𝑟 ) and the coefficient of determination (𝑟2), and compare alternative measures such as
the probability of superiority to this baseline. We, however, use mean differences as a baseline, as these are much more
commonly communicated to laypeople than measures like 𝑟 and 𝑟2. This allows us to assess biases introduced by the
status quo in popular accounts of scientific studies. We also explore several ways to improve upon mean differences not
explored by Brooks et al., including explicit statements about variance and analogies to more familiar terms, a technique
that has been shown to help contextualize unfamiliar numbers in other settings [7, 36, 45, 55]. Another difference is that
we collect a continuous measure of willingness to pay and compare this to a normative (risk-neutral) value, whereas
Brooks et al. use an ordinal scale in a setting without any such normative value. Finally, the substantially larger sample
size in our studies allows us to investigate effects that they are unable to estimate.

2.2 Relevance to the CHI Community

Despite many calls from the HCI community for improved statistical communication and reporting of effect sizes,
our comprehensive review of every award-winning paper at CHI 2020 shows that these practices are still quite rare
in the community. This is especially unfortunate given that HCI is an applied field that embraces a diverse set of
methods, measurement techniques, and statistical approaches. As such, without effect size reporting HCI research does
not always lend itself to easy comparisons across studies.

Outcome variability Inferential uncertainty Standardized effect sizeSimple effect size

Fig. 1. The frequency of various types of statistics reported in the 49 award-winning papers at CHI 2020 that contained quantitative
experiments. Outcome variability is often reported in the text, whereas visualizations are nearly evenly split between displays of
outcome variability and inferential uncertainty. In contrast, effect sizes (whether simple or standardized) are rarely reported.
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2.2.1 Transparent Statistical Communication in HCI. The HCI community has been mindful of developing strategies
for communicating statistics in an accurate, transparent, and helpful manner [15, 17, 43, 60]. Among other concerns,
conveying the actual magnitude of effects and the practical importance of findings have been emphasized by many HCI
researchers [25, 42, 50, 56]. In particular, Dunlop and Baillie argue that reporting the results of statistical tests alone
(e.g., p-values and test statistics) without presenting effect sizes can be particularly problematic in HCI, as compounding
factors that introduce noise in measuring human behavior may distort the perceived value of effects [28]. Additionally,
given the prevalence of small-sample studies and the relative lack of meta-analyses in the field, some researchers have
advocated for Bayesian analyses in the HCI community [41, 43] to shift the focus from dichotomous significance testing
to consider the magnitude and variability of estimated effects.

In addition to publishing papers calling for transparent statistical communication, HCI researchers have also developed
systems that assist in designing experiments and analyzing results from them [29, 40, 49, 61]. For example, Touchstone2
provides an interactive environment for experimental design and facilitates power calculations based on targeted effect
sizes [29], whereas Tea provides a language for automating statistical analyses given an experimental design and reports
effect sizes as a result [40].

Our work contributes to this literature in two ways. First, it provides a quantitative assessment of potential misper-
ceptions introduced by standard statistical reporting practices that many have criticized. Second, it demonstrates the
benefits to be had by shifting focus to effect size reporting, as per the transparent statistics guidelines set forth by the
HCI community [1].

2.2.2 Statistical reporting in the CHI community. Experiments are a prevalent method of evaluating hypotheses in
the HCI community, ranging from systems research that aims to validate a system’s efficacy to empirical findings
that reveal insights about how people behave and interact. As such, the way in which results of HCI experiments are
reported by authors and perceived by readers can have important implications for which methods and systems are
adopted in the community.

To better understand statistical reporting practices in the CHI community, we collected all papers that a received a
best paper or honorable mention award at CHI 2020 (151 papers total). Then we checked whether each paper contained
an experiment by searching for the keywords ‘experiment’ or ‘study’, resulting in 109 papers. Then we filtered out
papers that did not contain a quantitative experiment by reading each paper, leaving 49 papers. We coded the papers by
noting whether they communicated 1) outcome variability (e.g., standard deviations or prediction intervals (PIs)), 2)
inferential uncertainty (e.g., standard errors or confidence interval (CIs)), 3) simple effect sizes (e.g., mean or percentage
differences between two or more groups), and 4) standardized effect sizes (e.g., Cohen’s d).

Figure 1 shows the results of this analysis. First and foremost, we note that despite calls from many communities
(HCI key among them) for increased effect size reporting, it is quite rare for even award-winning papers at CHI to report
effect sizes (simple or standardized; 8 out of 49, 16%). Instead, it is most common that authors report outcome variability
by writing out standard deviations in text (29 out of 49, 60.0%), as is suggested by APA style guidelines. While this is
somewhat helpful, past work has shown that when both statistical visualizations and text-based statistics are reported,
visualizations dominate text in terms of people’s perceptions of statistical effects [35]. Looking at only visualizations
contained in these papers, we see that they are nearly evenly split between displays of outcome variability (PIs; 11 out
of 49, 22%) and inferential uncertainty (CIs; 14 out of 49, 28%), with slightly more of the latter than the former.

While these results are in line with a recent increase in reporting of CIs in HCI noted by Besançon & Dragicevic [10],
they are also astonishingly similar to those found by Cummings et al. from over a decade ago [23]. As such, our analysis
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Fig. 2. An overview of the sequence of four interrelated experiments we conducted. Each row represents one study.

highlights the need for better communication of standardized effect sizes in the HCI community. Next, we turn to
a series of four pre-registered experiments to assess how we might go about improving effect size reporting as a
community, and the benefits this would confer.

3 OVERVIEW OF EXPERIMENTS

We conducted four interrelated experiments comprising responses from nearly 5,000 participants to investigate how to
communicate effect sizes to laypeople, where the results of one study informed the design of the next. We pre-registered
the entire sequence, summarized in Fig. 2, in advance2.

All of our experiments presented participants with the same fictitious scenario used in prior work to evaluate people’s
effect size perception [35]. The scenario measures perceptions of treatment effectiveness while remaining both easily
understandable by laypeople and relatively free of biases or priors that might be attached to any particular real-world
treatments. Specifically, participants were told that they are athletes competing against an equally skilled opponent
named Blorg. The goal is to slide their boulder farther than Blorg’s, and there is an all-or-nothing 250 Ice Dollar prize
for the winner. While Blorg is known to always use a standard boulder, participants have the option of renting a
premium boulder (i.e., the treatment) known to slide further on average than Blorg’s boulder. Participants were shown
information about the effectiveness of the premium boulder, after which they were asked how much they were willing
to pay for it and to estimate the probability of winning if they used it. We chose these outcomes because they reflect
the types of individual-level decisions made by people on a daily basis (as opposed to, for instance, decisions made by
policymakers that might place more emphasis on mean differences regardless of variation in individual-level outcomes).
Willingness to pay is our primary dependent measure. In addition to being a standard measure of the value of treatments
in health economics and consumer behavior [6], willingness to pay in our scenarios has the added advantage of having
a normative value based on the probabilities and prize money presented. Finally, because people decide to invest in
treatments they read about in the media (for example, buying running shoes that they claim to increase speed by 4%),
willingness to pay is an ecologically valid measure.

We fixed the actual parameters of the standard and premium boulders across all four experiments, choosing values
that were representative of treatment effects studied in practice. Specifically, the difference between the standard

2https://aspredicted.org/zd8w2.pdf
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and premium boulders was set to correspond to a Cohen’s 𝑑 of 0.25, which is the median effect size across a quasi-
random sample of studies in psychology [22] and typical of effects studied in medicine, neuroscience, and the social
sciences [8, 14, 16]. This is equivalent to an underlying probability of superiority of 57% for the premium boulder over
the standard one. We achieved this by setting the mean of the standard and premium boulder sliding distances to 100
meters and 104 meters, respectively, each normally distributed with a standard deviation of 15.3 meters so that 95%
confidence intervals and 95% prediction intervals worked out to easily readable round numbers. This corresponds to a
normative risk-neutral willingness to pay of 17.5 Ice Dollars for the premium boulder, calculated as the difference in
expected value between using the premium boulder (250 × 57%) and using the standard boulder (250 × 50%).3 Our first
experiment, summarized in the top row of Fig. 2, was the simplest of the four. Participants first saw information about
the standard and premium boulder phrased in one of five mean difference formats and then stated their willingness to
pay and perceived probability of superiority. This allowed us to determine which format caused people to overestimate
treatment effectiveness the most, which turned out to be a visualization that depicted means and 95% confidence
intervals for the standard and premium boulders.

We used this format as a starting point in each of our next two experiments to look at how well we could correct
potential misperceptions of effect size. The idea was that if we could correct the biases introduced by showing 95%
confidence intervals, we would be able to do the same for the other, less problematic formats.

Our second experiment started off identical to our first experiment, but all participants saw information about the
premium boulder in the same mean difference format (a 95% confidence interval visualization), after which they were
asked for willingness to pay and probability of superiority. At this point, we introduced additional information about
variability in outcomes in one of five randomly selected formats, indicated in the second row of Fig. 2. After seeing
this information (or nothing in a control condition), we asked participants if they would like to revise their previous
answers and collected updated values for willingness to pay and probability of superiority. From this experiment, we
learned that directly showing people the probability of superiority for the premium boulder was (directionally) the
best format for reducing overestimation bias, with Cohen’s height analogy and an explicit statement about individual
outcome variance providing similar benefits.

In our third experiment, we asked whether we could improve upon the best single intervention (stating the probability
of superiority for the premium boulder directly) by combining it with other formats.We repeated the previous experiment,
but before asking for revised estimates, showed participants the probability of superiority for the premium boulder
along with one of the other four formats for communicating outcome variability to provide additional context.

We used our fourth and final experiment as a robustness check for our previous findings. Specifically, we looked at
the effectiveness of the best single format from Study 2 (probability of superiority) for correcting biases introduced
by all mean difference formats from Study 1 other than the worst-performing format (the 95% confidence interval
visualization), and found similar benefits.

We chose sample sizes for each experiment based on pilot data so that we would have 80% power in detecting effect
sizes of a minimal interest (a 10% difference in relative error reduction) with a 5% false positive rate. Screenshots of
all experiments and conditions are included as supplemental material4, along with all data and secondary analyses
from our pre-registration plan. In sum, these four experiments comprised of nearly 5,000 unique participants allowed

3A normative risk-averse willingness to pay would be even less. As will be seen, the choice between these common norms is not pivotal as the average
willingness to pay is much greater than 17.50, even when participants revise initial answers.
4https://github.com/jhofman/effect-size-analogies-chi2022
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us to address both of our main research questions in a reliable and robust manner. We provide further details of each
experiment along with their results in the next four sections.

4 STUDY 1: ASSESSING (MIS)PERCEPTIONS

We designed our first study to evaluate how effective people perceive an uncertain treatment to be when it is phrased in
terms of only mean differences between conditions, as is commonly the case in popular books and articles. Participants
were presented with information about a treatment in one of five formats with varying levels of detail. The least
informative format was a simple directional statement that merely indicated that the treatment led to better outcomes
on average, without any precise statements about the size of the improvement. While this is missing important details,
it is perhaps the most common phrasing that one encounters in summaries of scientific findings (e.g., in scientific titles
or abstracts, or in news stories covering these results) [24]. Next were two formats that contained information about
the magnitude of the improvement, showing the expected benefit from the treatment in absolute and percentage terms.
This simulates scenarios where one may learn about the size of an improvement without necessarily having context for
the scale on which outcomes are measured. Finally, we tested two other formats commonly used in conveying scientific
results: showing 95% confidence intervals to convey uncertainty in estimating mean differences, both with and without
a corresponding visualization.

4.1 Experimental Design

As mentioned above, participants were shown a fictitious scenario in which they are competing against an equally
skilled opponent named Blorg in the up-and-coming sport of boulder sliding. The goal is to slide their boulder farther
than Blorg’s, and they alone have the option of renting a premium boulder (the treatment) that is expected (but not
guaranteed) to slide farther than the standard boulder that Blorg will use. There is an all-or-nothing 250 Ice Dollar prize
for the winner.

Participants were randomly assigned to see information about the standard and premium boulders in one of five
formats:
• Directional: “The premium boulder slid further than the standard boulder, on average”.

• Absolute difference: “The premium boulder slid 4 meters further than the standard boulder, on average”.

• Percentage difference: “The premium boulder slid 4% further than the standard boulder, on average”.

• Confidence interval without visualization: “The average sliding distance with the standard boulder is 100 meters
and a 95 % confidence interval is 99 to 101 meters. The average sliding distance with the premium boulder is 104
meters, and a 95% confidence interval is 103 to 105 meters”.

• Confidence intervalwith visualization: The same statement as in the previous condition, alongwith a visualization
that displays the confidence interval, as shown in Fig. 3.

For the last two conditions we added the following text to help participants understand what a 95% confidence interval
represents: “A 95% confidence interval conveys the uncertainty in estimating your true average sliding distance. It is
constructed such that if we watched many such sessions of 1,000 slides and repeated this process, 95% of the constructed
intervals would contain your true average.”
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4.2 Participants

We recruited 750 participants from Amazon’s Mechanical Turk and randomly assigned them to conditions (148 in
directional statement, 145 in absolute difference, 162 in percent difference, 156 in 95% confidence interval without
visualization, and 139 in 95% confidence interval with visualization). We made the HIT (i.e., Human Intelligence Task)
available to U.S. workers with an approval rating of 97% or higher and paid a flat fee of $0.50 for completing the task.
We prevented workers from taking the HIT if they participated in any of our pilots. The average time to complete the
task was 3.0 minutes (SD = 4.4 minutes), with no significant difference between conditions (𝐹 (4,745)=1.69, p=0.149).

4.3 Procedure

Participants were first presented with a brief introduction to the HIT and asked to sign a consent form indicating
that they agreed to partake in the study. Then they were told that they would be asked to make a decision about an
uncertain event and provided with a brief training on how to answer the types of questions they would be presented
with later in the study. Specifically, we asked them the following:

Assume you and your friend are equally skilled at a game. If you were to play them at this game 100 times,
how often do you think you would win (assuming this game does not have ties)?

If they answered "50", they were allowed to proceed. If not, they were shown a hint indicating that they should expect
to win about half of the time and allowed to try again until they responded with "50".

On the next screen, we introduced the boulder sliding competition, as described above, and asked participants to
check a box to confirm they understood the scenario before proceeding. At this point, they were shown a new screen
with information about the standard and premium boulders in one of the five formats listed above. We first asked them
to estimate the probability of superiority for the premium boulder:

If you were to compete with Blorg 100 times where you had the premium boulder and Blorg had a standard
boulder, what is your best estimate of the number of times you would win?

And next asked for their willingness to pay:

Given that you’ll win 250 Ice Dollars if you beat Blorg, but nothing if you lose, what is the most you would
be willing to pay to use the premium boulder?

After submitting these two responses, participants were asked a final multiple choice question about their willingness
to pay decision. This was an exploratory question to gain insight into if they made the decision based on the prize
money, the feeling of winning, both, or neither. This concluded the experiment.

4.4 Results

Tomeasure how accurately participants perceived the effect of the premium boulder, we calculated the error in willingness
to pay for the premium boulder by taking the absolute difference between each participant’s stated willingness to
pay for the treatment and the normative value (17.5 Ice Dollars, as calculated in the previous section by assuming a
person is risk-neutral and maximizing their expected reward). We also computed participants’ error in the probability of

superiority for the premium boulder by taking the absolute difference between each participant’s stated probability
of superiority and the true probability of superiority (57%). For the conditions that included confidence intervals,
participants had enough information to compute both of these quantities exactly. The three other formats (directional,
absolute difference, and percent difference) lacked complete information, but we still compare responses to normative
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Fig. 3. The 95% confidence interval visualization format used in our first three studies.

values to measure the difference between how effective people perceive treatments to be compared to how effective
they typically are. Following our pre-registration plan, we used a one-way ANOVA to evaluate whether the format in
which mean differences are presented affects perceived effect size and identified the worst-performing format.5

(a) The willingness to pay by condition. Jittered points show
individual responses, with box plots overlayed to depict quan-
tiles. Dark dots show the mean in each condition with error
bars showing one standard error, and the dashed line shows
the risk-neutral willingness to pay.

(b) The stated chance of winning by condition. Jittered points
show individual responses, with box plots overlayed to depict
quantiles. The dark dots show the mean in each condition
with error bars showing one standard error, and the dashed
line shows the true probability of superiority.

Fig. 4. The result of Study 1.

Willingness to pay.As indicated in Fig. 4a, participants were willing to pay substantially more for the premium boulder
than the risk-neutral price of 17.5 Ice Dollars across all conditions, with an average error of anywhere from 41 Ice Dollars
5In addition to analyzing error in these perceptions, we also analyzed the raw responses without comparing them to normative values, as declared in our
pre-registration. The results, included in our supplemental material, show very similar patterns to what we present here. We also repeated our analyses
using randomization inference (RI) to relax modeling assumptions (e.g., normalcy and sphericity required for ANOVAs), and confirmed that results are
very similar to what we report under the pre-registered ANOVA analysis.
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in the percentage difference condition to more than 66 Ice Dollars when they were shown 95% confidence intervals. A
one-way ANOVA confirms that these differences between conditions are statistically significant (𝐹 (4,745)=5.92, p<0.001),
with the 95% confidence interval visualization condition performing directionally worst. A linear regression comparing
this condition to all others shows there is no statistically significant difference if the visualization is removed (t=-0.87,
p=0.38) or between this condition and the directional statement (t=-0.71, p=0.48), whereas other conditions have
comparatively lower error (percentage difference: t=-4.29, p<0.001, absolute difference: t=2.18, p<0.01).
Probability of Superiority.We found a similar pattern for participants’ perceptions of the probability of superiority
for the premium boulder (Fig. 4b), with even more extreme results. Once again, participants who saw the 95% confidence
interval visualization performed worst, followed by those who saw 95% confidence intervals without a visualization
(t=-3.22,p<0.01). Relative to the 95% confidence interval visualization condition, participants that were exposed to percent
differences (t=-10.49, p<0.001), absolute differences (t=-7.19, p<0.001), and the directional statement (t=-7.96, p<0.001)
perceived the effectiveness of premium boulders more accurately, but participants overestimated the effectiveness of
the premium boulder by more than 15 percentage points across all conditions. To our surprise, a treatment with a 57%
probability of superiority was perceived as having around 90% probability of superiority when results were presented
with a graph of means 95% confidence intervals.

We analyzed the final question in this experiment regarding participants’ motivation of paying for the premium
boulder to get a better sense of why responses deviated from the risk-neutral price. For instance, it could be the case
that people have intrinsic value for the feeling of winning by itself, over and above the value of the payoff they would
receive for doing so. Responses from this question, however, indicated that the majority of participants (68.3%) were
solely concerned with the prize money alone, whereas a smaller fraction (21.1%) considered both the prize money and
the feeling of winning. Relatively few people (6.9% of participants) considered only the feeling of winning.

The results of our first experiment demonstrate that phrasing treatments in terms of mean differences alone can
lead people to overestimate their effectiveness. Interestingly, we see that following conventional guidelines [2] and
providing readers with 95% confidence intervals—that is, strictly more information than simple mean differences—can
in some cases exacerbate this problem. As per similar findings in [35], we suspect this is due to readers confusing
inferential uncertainty with outcome variability (i.e., how precisely a mean is estimated with how much outcomes vary
around the mean), which we investigate next.

5 STUDY 2: CORRECTING POTENTIAL MISPERCEPTIONS

Our previous study showed that common ways of communicating treatments—specifically in terms of mean differences—
can cause readers to overestimate treatment effectiveness. In this experiment, we explore ways to correct this. We first
present readers with the most biasing condition from our previous study (the 95% confidence interval visualization)
and elicit willingness to pay and perceived probability of superiority. Then we present additional information about
variability in individual outcomes and give participants the opportunity to revise their responses to the previous
questions.

We explore five formats to convey outcome uncertainty, the simplest being Cohen’s categorical labels [21] that
classify an effect as "small", "medium", or "large" according to Cohen’s 𝑑 . We compare this to a variance condition where
we directly give participants information about how much outcomes vary around their average values. This contains
all of the information necessary to compute a standardized effect size, but does not present the reader with effect
size information directly. We also look at direct measures of standardized effect size that simultaneously incorporate
information about both mean differences and variation in individual outcomes. Specifically, in one condition, we show
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readers the probability of superiority for the treatment, which is thought to be easily understood by laypeople [51].
Finally, inspired by Cohen’s own suggestion from over 30 years ago, we test two other “analogy” conditions that compare
the treatment to more familiar effects such as differences in height by age and weather over time. We hypothesize
that the more direct the reported effect size measure is, the more accurately people will perceive that effect size. In
particular, the condition in which participants are shown the true probability of superiority represents an upper bound
on how well we can expect people to perform, and thus it becomes a useful benchmark to compare other conditions,
such as the effect size analogies, to.

5.1 Experimental Design

Participants were randomly assigned to see information about outcome uncertainty in one of five formats or no such
information in a control condition:
• Category: “The difference in the average sliding distance between the standard boulder and the premium boulder is
small relative to how much individual slides vary around their long-run average”.

• Variance: “Roughly speaking, 95% of your next 1,000 slides with the standard boulder would be between 70 and 130
meters and 74 and 134 meters with the premium boulder.”

• Probability of superiority: “Roughly speaking, if you were to play 100 times where you had the premium boulder
and Blorg had a standard boulder, you would expect to win 57 times.”

• Height analogy: “Roughly speaking, the premium boulder will beat the standard boulder about as often as a randomly
selected 16 year old is taller than a randomly selected 15 year old, among American women.”

• Weather analogy: “Roughly speaking, the premium boulder will beat the standard boulder about as often as the
maximum temperature on February 15th is higher than the maximum temperature on January 15th in New York City.”

• Control: Participants in this condition are prompted to revise their willingness to pay and the probability of superiority
without any additional information being given.
The height analogy was adapted directly from Cohen’s textbook [19], where he contextualizes a 𝑑 of 0.2 using this

exact comparison. To make sure that this was still accurate, we calculated the actual probability of superiority for
heights of 16 year old women compared to 15 year old women in the U.S. using data from the National Center for
Health Statistics [31]. We found that Cohen’s analogy matched the effect size of the premium boulder exactly and so
used it directly in our studies.

We independently designed a second analogy that compares the effect of the premium boulder to differences
in weather over time. We chose weather because people have a relatively large and most representative sample of
temperatures during different times of the year. Ideally, we would have personalized the weather analogy to each
participant’s location, but doing imposes a number of technical hurdles (e.g., collecting locations, downloading historical
weather data for those locations, and constructing the corresponding personalized analogies) that we leave as future
work. Instead, we used New York City as a benchmark because it is the most populated and frequently visited city in
the country, making it a reasonable reference point for many people. We collected the daily maximum temperatures for
the last 100 years in New York City using data from the National Oceanic and Atmospheric Administration provided
through Google Big Query [11], and found a pair of days (January 15th and February 15th) that had a probability of
superiority of 57%.
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5.2 Participants

We recruited 1,800 participants from Amazon’s Mechanical Turk and randomly assigned them to conditions (298 in
control, 304 in category, 309 in variance, 302 in probability of superiority, 289 in height analogy, and 298 in weather
analogy). We made our HIT available to U.S. workers with 97% or more approval rate and paid $1.00 for completing the
task. We prevented workers from completing the HIT if they had completed Study 1 or previous pilots. The average time
to complete the task was 6.3 minutes (SD=5.9 minutes), with no difference in the completion time between conditions
(F1,1798=1.82, p=0.177).

5.3 Procedure

The first part of this experiment was identical to the previous study, with the exception that all participants initially
saw information about the premium boulder in the same format, the 95% confidence interval visualization shown in
Figure 3.

After participants submitted their willingness to pay and probability of superiority for the premium boulder, they
were told that they would have a chance to revise their estimates. Upon clicking a checkbox and continuing, they
were shown additional information in one of the five formats mentioned above (or no extra information in a control
condition) and asked to update their willingness to pay and probability of superiority. Their previous answers were
shown alongside an empty text box that required them to enter their revised responses.

This was followed by three post-task questions. The first was a comprehension check that asked participants to
estimate how often they would win if they and Blorg both used a standard boulder. Then we asked two questions to
gauge how people perceived the effect size analogies we created. On one page, we asked participants how often they
think the maximum temperature on February 15th was higher than the maximum temperature on January 15th, out
of the last 100 years in New York City. On the following page, we asked how often they think that a randomly selected
16-year-old American woman would be taller than a randomly selected 15-year-old American woman, out of 100 such
pairs. After each of these questions, we prompted participants to confirm or revise their responses. The final page was
identical to the previous study.

5.4 Results

Similar to the previous experiment, we analyzed participants’ willingness to pay for the premium boulder and their
estimated probability of winning if they used it. Because probability of superiority is both a treatment condition (one
of the effect size communication formats we present) and a dependent measure, willingness to pay is the primary
dependent measure. In contrast to the previous experiment, however, we had two measurements for each of these
quantities: an initial measurement before they saw information about individual outcome uncertainty and a revised
measurement afterward. We computed the absolute error in all four quantities by comparing each to its normative
value (17.5 Ice Dollars for willingness to pay and 57% for probability of superiority).

We looked at shifts in each dependent variable in two ways. First, we compared the full distributions of responses
before and after showing outcome variability information to each other. Then we examined within-participant shifts in
responses using linear models (one for willingness to pay and another for estimated probability of superiority). The
models estimate the absolute error in a participant’s revised response for each measure based on the absolute error in
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Fig. 5. The distributions of initial willingness to pay (dashed lines) and the revised willingness to pay (solid lines) by condition. The
empty circles indicate the mean of the initial responses in each condition, and the filled circles indicate the mean of the revised
responses. The vertical dashed line shows the normative willingness to pay value. For readability, this plot excludes responses greater
than 205 (3.9% of responses).

their initial response, with a variable slope and intercept for each condition 𝑘 :

𝑦𝑟𝑒𝑣𝑖𝑠𝑒𝑑𝑖 = 𝛼0 + 𝛽0 𝑦
𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖 +

∑
𝑘

1𝑐𝑖=𝑘
(
𝛼𝑘 + 𝛽𝑘 𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖

)
,

where 𝑖 indexes each participant and 𝑐𝑖 is the condition they were assigned to.
Willingness to pay. Figure 5 shows the distributions of willingness to pay for the premium boulder by condition
both before (dashed lines) and after (solid lines) seeing outcome uncertainty information. The size and locations of the
arrows show the shift in the average willingness to pay between initial and final responses in each condition. Three
things are apparent from this plot. First, there is a strong round number effect in responses across all conditions, with
many people submitting initial values of 50 or 100. Second, showing outcome uncertainty of any kind substantially
improved the accuracy of responses compared to the control condition, where responses mostly remained unchanged.
Much of this improvement comes from moving people away from round number responses (e.g., from 100 to lower
values). And third, a larger fraction of participants revised their estimates downwards in the probability of superiority
condition than in other conditions, with the height analogy and variance formats showing similar improvements.

We used the linear model above to quantify these improvements at the individual participant level. Specifically, we
computed the average within-participant reduction in error for each condition from the slopes of the fitted model,
shown in Fig. 6a. Participants assigned to the probability of superiority condition had the largest error reduction (53%
on average), however there was no statistically significant difference between this format and either the height analogy
condition (t=0.37, p=0.71) or the variance condition (t=1.60, p=0.11). The weather analogy format and the category
condition were significantly less effective for reducing errors in willingness to pay (t=3.16, p<0.01 and t=5.00, p<0.001)
than the probability of superiority format.
Probability of Superiority. As shown in Fig 6b, we see a similar ranking of formats for error reduction in estimating
the probability of superiority of the premium boulder as we saw with willingness to pay. Unsurprisingly, participants
who were shown the actual probability of superiority did best, as all they had to do was recall a value they had
previously seen. The variance and height analogy formats were next, with the weather analogy and category conditions
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(a) The relative error reduction in willingness to pay, esti-
mated by regressing each participant’s final error against
their initial error.

(b) The relative error reduction in stated probability of supe-
riority, estimated by regressing each participant’s final error
against their initial error.

Fig. 6. The relative error reduction in willingness to pay and the stated probability of superiority.

reducing errors the least. Regardless, all formats for conveying outcome uncertainty showed statistically significant
improvements over the control condition (t=-9.37, p<0.001 for variance; t=-8.16, p<0.001 for height analogy; t=-4.65,
p<0.001 for weather analogy; t=-4.12, p<0.001 for category).

The results of our second experiment demonstrate that while showing only mean differences can cause people to
overestimate treatment effectiveness, adding information about variability in individual outcomes can substantially
reduce potential misperceptions. Stating outcome variability in terms of probability of superiority was (directionally)
best, although a non-quantitative analogy in terms of differences in height by age performed similarly, as did showing
variance explicitly. We could summarize these results by saying that formats such as probability of superiority cut
errors by more than half, on average. But, in the spirit of this experiment, we think it might be more effective to phrase
our results as follows: there is a 62% chance that error in willingness to pay for the premium boulder is higher when
shown only mean differences compared to also seeing information about outcome variability. To put this in perspective,
that is about equal to the probability that a randomly selected 18 year old American woman is taller than a randomly
selected 13 year old American woman.

6 STUDY 3: PAIRED INTERVENTIONS

In our previous experiment we saw that several relatively different formats for communicating variability in individual
outcomes were equally helpful for reducing potential misperceptions about treatment effectiveness. In this study, we
investigate whether there are any complementarities between these formats. Specifically, we pair the best format
from Study 2 (probability of superiority) with each of the four remaining outcome variability conditions and test for
reductions of error. As in the example in the previous paragraph, we showed participants the probability of superiority
for the standard boulder first, followed by a sentence that said, "To put this in perspective, ... " and showed either the
category, variance, height analogy, or weather analogy formats.

6.1 Procedure & Participants

The procedure for this experiment was identical to Study 2 except that participants saw the probability of superiority
format combined with one of the four other outcome variability formats (category, variance, height analogy, or weather
analogy). There was no control condition in this experiment because that from Study 2 suffices.
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Fig. 7. The relative error reduction in willingness to pay after seeing the combined interventions. The dashed line shows the mean
error reduction from the probability of superiority condition alone from Study 2 (the shaded area shows one standard error).

We recruited 1,200 participants from Amazon’s Mechanical Turk and randomly assigned them to conditions (301 in
probability of superiority with category, 303 in probability of superiority with height analogy, 304 in probability of
superiority with variance, 292 in probability of superiority with weather analogy). We again recruited U.S. workers
with 97% approval rating or higher and paid $1.00, excluding workers had participated any of our previous pilots or
studies. The average time to complete the task was 6.4 minutes (SD=4.4 minutes), with no difference in the completion
time between conditions (F1,1198=0.6, p=0.431).

6.2 Results

We analyzed the data using the same linear model as in Study 2. Only willingness to pay and revised willingness to
pay were analyzed because the true probability of superiority was shown to all participants in all conditions. Figure 7
depicts the relative error reduction in willingness to pay after seeing the combined interventions. No combination
of probability of superiority with another format was significantly better than probability of superiority alone (with
category: t=-1.65, p=0.099, with height analogy: t=-0.52, p=0.607, with variance: t= 0.03, p=0.977, with weather analogy:
t= 1.04, p=0.297).

The results of this experiment show that it is difficult to improve upon probability of superiority for reducing errors
in perceived effect sizes. At the same time, we do not see any detrimental effects to showing additional information to
help readers contextualize treatment effectiveness.
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7 STUDY 4: ROBUSTNESS CHECK

Studies 2 and 3 demonstrated that explicitly showing information about outcome variability corrected potential
misperceptions introduced by showing mean differences alone. However in both of those studies participants initially
saw information about the premium boulder in just one of the mean difference formats that people frequently encounter:
the 95% confidence interval visualization, which was the most misleading format we tested. In this study we check the
robustness of our findings by first showing people information about the premium boulder in the other mean difference
formats from Study 1 and seeing if exposure to the probability of superiority format has the same normalizing effect.

7.1 Participants & Procedure

We recruited 1,200 participants from AMT who were randomly assigned to conditions (317 in percent difference, 271 in
absolute difference, 311 in directional, 301 in 95% confidence interval without a visualization). We again recruited U.S.
workers with 97% approval rating or higher and paid $1.00, excluding workers had participated any of our previous
pilots or studies. The average time to complete the task was 5.5 minutes (SD=5.6 minutes), with no difference in the
completion time between the conditions (F1,1198=1.15, p=0.284).

Study 4 was similar to Studies 2 and 3, except that what varied between conditions was the mean difference format
that participants saw before submitting their initial willingness to pay and probability of superiority. Participants were
randomly assigned to one of four mean difference formats: a directional statement, percentage difference, absolute
difference, or 95% confidence interval without a visualization. After submitting their initial responses, all participants
saw outcome variability information in the probability of superiority format and were asked to revise their estimates,
as in previous studies. Other details were identical to the previous two studies.

7.2 Results

We used the same linear model as in the previous two studies to analyze participants’ willingness to pay. As shown in
Fig. 8, we found large reductions in error for all conditions. Comparing these to the control condition from Study 2, we
find that all gains are substantial and statistically significant (26.1% for percent difference, t=-5.91 p<0.001; 39.0% for
absolute difference, 39.0%, t=-6.35 p<0.001; 39.8% for directional, t=-9.19 p<0.001; 40.8% for 95% confidence intervals
without visualization, t=-9.57 p<0.001).

We confirmed that, regardless of which initial mean difference format people are shown, exposure to outcome vari-
ability in the form of probability of superiority statements reduces potential misperceptions of treatment effectiveness.

8 PERCEPTIONS OF EFFECT SIZE ANALOGIES

In three of our four studies we asked participants how often they thought the maximum temperature in New York
City was higher on February 15th compared to January 15th and how often a randomly selected 16 year old American
woman would be taller than a randomly selected 15 year old American woman.

We aggregated participants’ responses from Studies 2 and 4 and compared this to the ground truth (57%), as shown
in Fig. 9.6 Participants had accurate perceptions for both of these analogies, on were only off by a few percentage points
on average. Bias and variance are lower for the height analogy compared to the weather analogy, in line with our results
that the height analogy was more effective than the weather analogy in debiasing. Cohen’s height analogy proved to be
surprisingly accurately perceived.

6We excluded Study 3 from this analysis because some participants saw the ground truth alongside the analogies during the study.
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Fig. 8. The distribution of initial willingness to pay (dotted lines) and final willingness to pay after seeing probability of superiority
(solid lines) by condition for Study 4. The empty circles indicate the mean of the initial responses in each condition, and the filled circles
indicate the mean of the revised responses. The vertical dashed line shows the normative willingness to pay value. For readability this
plot excludes responses greater than 205 (3.25% of responses).

9 DISCUSSION

When results are summarized only in terms of average effects, as is common in news reporting, how do people
perceive treatment effectiveness? Our studies found that four common ways of summarizing results led to potential
misperceptions of treatment effectiveness, as proxied through two variables: willingness to pay for a treatment and
perceived probability of superiority. A surprising result was that the inclusion of 95% confidence intervals increased
both error and variance in perceptions of probability of superiority. A treatment with a 57% probability of superiority
was perceived as having around 90% probability of superiority when results were presented with a graph of means and
confidence intervals. While we do not suggest omitting confidence intervals in descriptions of scientific results, we feel
it is worth noting that they have biasing effects that can be countered by providing simple information about outcome
variability.

How do these initial perceptions change after people are presented with outcome variability information? We
investigated how five textual information formats conveying outcome variability cause people to update their willingness
to pay for a treatment. Of the formats tested, stating the probability of superiority was most effective, reducing error in
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Fig. 9. Boxplots showing distributions for the stated probability of superiority for the height and weather analogies. Points show the
mean for each analogy. Error bars showing one standard error are present but exceedingly small. The horizontal gray line shows the
true probability of superiority for the analogies (57%).

willingness to pay by about 50%. Specifically, we observed a 62% chance that error in willingness to pay for a treatment
was higher when participants only saw mean differences compared to seeing information about the probability of
superiority. To put this in perspective, this shift is about equal to the probability that a randomly selected 18 year
old American woman is taller than a randomly selected 13 year old American woman. More support for the use of
probability of superiority came in the last study, in which it was shown that it was robust: it had a similar debiasing
effect when applied to four different ways of presenting scientific results, from those found in journal articles to the
merely directional claims that are common in everyday media.

For reducing error, showing the variance in outcomes or simply using an analogy comparing people’s heights at
different ages was not substantially different than showing the probability of superiority on average. These findings
have a practical impact for scientists and journalists because the proposed statements can be formulated with little
overhead; one only needs simple summary statistics to create them. In testing whether the best single format (probability
of superiority) could be made more effective by combining it with other formats, we found that it could not, implying
that authors are not making compromises when sticking with easy-to-read statements.

We were pleasantly surprised that the height analogy is, on average, about as effective as other precise quantitative
measures such as the probability of superiority and variance. We speculate that beyond the benefits demonstrated in the
paper, analogies may have other potential advantages, such as better user engagement and appeal to populations with
low numerical literacy. In the optional feedback textbox we provided at the end of the study, we found some anecdotal
evidence for how participants used the analogies to make their judgements. For instance, one participant mentioned
why they thought the effect was small: "I think that most girls have stopped growing at around age 15, so that is why I
think 15 and 16-year-olds would be about the same height." Some expressed their curiosity about the provided analogies
as well (e.g., "I would like to know the actual stats about the weather!").

Given the results of our studies, we encourage authors to do the following when communicating their findings.
First, provide the probability of superiority (or common language effect size) where applicable, which can be easily
derived from Cohen’s 𝑑 : 𝑃superiority = Φ(𝑑/

√
2), where Φ is the cumulative distribution function for the standard normal

distribution, or as the area under the ROC curve (AUC) between conditions. This information may be especially helpful
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when authors provide visual confidence intervals to mitigate potential misconceptions. Using discrete outcomes to
express the probability of superiority (e.g., “if you were to play 100 times where you had the premium boulder and
Blorg had a standard boulder, you would expect to win 57 times”) is preferred compared to using the percentage format
(e.g., if you were to play where you had the premium boulder and Blorg had a standard boulder, you would expect
to win with a 57% probability) as shown in prior work [34]. In addition, authors should consider reporting variance
in outcomes. Reporting variance was one of the most prevalent strategies from the award-winning collection of CHI
papers, appearing in around 60% of them. While our investigation found that reporting variance was less effective
in decreasing misconceptions, it has the advantages of being familiar and is already provided by statistical software.
Lastly, authors might consider providing analogies to make their results more engaging. We provide a script in the
supplemental material that will calculate the height analogy for authors who would like to use it in their papers.

As for limitations of our work, here we have studied just one (hypothetical) setting, involving one (representative)
effect size [22], with a particular population (laypeople) and a specific (winner-takes-all) payoff function. Future work
could explore how results vary for different scenarios (e.g., real-world decisions with high stakes) or for different
underlying effect sizes. It is also possible that the relative benefits of communicating outcome variability and standardized
effect sizes are smaller for expert populations compared to laypeople, although past work suggests there may still be
benefits to explicit presentations of outcome variability [35]. Furthermore, there are of course scenarios for which raw
(non-standardized) effect sizes are appropriate, and outcome variability is less important. Finally, we have not looked at
the issue of communicating inferential uncertainty about standardized effect sizes themselves—for instance, it would be
interesting to think about how to convey that there is uncertainty in an analogy used to communicate probability of
superiority itself. We see all of these directions as possibilities for future work.

In sum, in this paper, we present a series of experiments that investigate how to effectively communicate the
effectiveness of a treatment. We find that for typical effect sizes in behavioral research, simply showing averages can
lead people to overestimate treatment effectiveness, and this can be exacerbated by presenting information pertaining
to statistical significance. Then we investigate how these initial perceptions change after people are shown information
about variability in individual outcomes. We find that such information substantially reduces potential misperceptions.
One applied recommendation stemming from this work would be to employ simple statements that describe how often
one group outperforms another, or analogies grounded in other familiar phenomena, to help readers contextualize the
effectiveness of treatments.
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